Below we have listed physical properties for both our E-Glass/Epoxy and Carbon/Epoxy battens.
At the bottom of the chart there is a brief discussion on the EI numbers, how we derived them and how they can help you in proper and exact batten selection for your sails.
E-Glass Epoxy – Non Tapered – |
||||||
---|---|---|---|---|---|---|
RBS Battens | Flexural Stiffness | Flexural Stiffness | 3 Point Deflection | Weight per Meter | Available Lengths | |
Order Code | Spring Rate | Beam Theory, E.I | 10 Lbs – 1 m | |||
Lbs/Inches | NM^2 | Inches | mm | Grams | mm | |
E38540 | 78.12 | 285.1 | 0.128 | 3.3 | 1048 | 10660 |
E25500 | 41.67 | 152.1 | 0.240 | 6.1 | 592 | 9144 |
E25400 | 21.74 | 79.4 | 0.460 | 11.7 | 485 | 9144 |
E25350 | 15.04 | 54.9 | 0.665 | 16.9 | 424 | 6100 |
E25300 | 9.35 | 34.1 | 1.070 | 27.2 | 362 | 6100 |
E25265 | 6.72 | 24.5 | 1.488 | 37.8 | 323 | 6100 |
E19400 | 16.53 | 60.3 | 0.605 | 15.4 | 364 | 6100 |
E19350 | 11.48 | 41.9 | 0.871 | 22.1 | 320 | 6100 |
E19300 | 7.12 | 26.0 | 1.405 | 35.7 | 275 | 6100 |
E19265 | 4.90 | 17.9 | 2.040 | 51.8 | 239 | 6100 |
E19230 | 3.13 | 11.4 | 3.200 | 81.3 | 206 | 6100 |
E19200 | 2.31 | 8.4 | * 2.160 | 54.9 | 185 | 6100 |
E19180 | 1.65 | 6.0 | * 3.030 | 77.0 | 167 | 6100 |
E19160 | 1.26 | 4.6 | ** 1.780 | 45.2 | 148 | 6100 |
E15300 | 5.79 | 21.1 | 1.728 | 43.9 | 215 | 6100 |
E15265 | 4.03 | 14.7 | 2.480 | 63.0 | 192 | 6100 |
E15230 | 2.67 | 9.7 | 3.750 | 95.3 | 165 | 6100 |
E15200 | 1.81 | 7.4 | * 2.763 | 70.2 | 148 | 6100 |
E15180 | 1.31 | 4.8 | ** 1.715 | 43.6 | 130 | 6100 |
E15160 | 0.95 | 3.5 | ** 2.34 | 59.4 | 117 | 6100 |
E15140 | 0.58 | 2.1 | *** 1.605 | 40.8 | 98 | 6100 |
E10300 | 3.99 | 14.6 | ** 0.562 | 14.3 | 146 | 6100 |
E10265 | 2.65 | 9.7 | ** 0.848 | 21.5 | 127 | 6100 |
E10230 | 1.85 | 6.8 | ** 1.211 | 30.8 | 110 | 6100 |
E10200 | 1.18 | 4.3 | ** 1.898 | 48.2 | 95 | 6100 |
E10180 | 0.86 | 3.1 | ** 2.595 | 65.9 | 85 | 6100 |
E10160 | 0.62 | 2.3 | *** 1.495 | 38.0 | 75 | 6100 |
E10140 | 0.46 | 1.7 | *** 2.018 | 51.3 | 67 | 6100 |
E10120 | 0.33 | 1.2 | **** 0.700 | 17.8 | 56 | 6100 |
E10100 | 0.26 | 0.9 | **** 0.910 | 23.1 | 48 | 4191 |
E10090 | 0.23 | 0.8 | **** 1.000 | 25.4 | 44 | 4191 |
* 5 lbs / 2.27 Kg weight used | ||||||
** 2.244 lbs / 1.019 Kg weight used | ||||||
*** 0.933 lbs/ 0.423 Kg weight used | ||||||
**** 0.234 lbs / 0.106 Kg weight used |
Carbon/Epoxy –Non Tapered– |
||||||
---|---|---|---|---|---|---|
RBS Battens | Flexural Stiffness | Flexural Stiffness | 3 Point Deflection | Weight per Meter | Available Lengths | |
Order Code | Spring Rate | Beam Theory, E.I | 10 Lbs – 1 m | |||
Lbs/Inches | NM^2 | Inches | mm | Grams | mm | |
CB38400 | 105.26 | 384.21 | 0.095 | 2.4 | 588 | 9100 |
CB38350 | 70.42 | 257.04 | 0.142 | 3.6 | 507 | 9100 |
CB38300 | 43.86 | 160.09 | 0.228 | 5.8 | 438 | 9100 |
CB38250 | 24.39 | 89.02 | 0.410 | 10.4 | 365 | 9100 |
CB25400 | 66.67 | 243.33 | 0.150 | 3.8 | 382 | 6010 |
CB25350 | 43.29 | 158.01 | 0.231 | 5.9 | 329 | 6010 |
CB25300 | 27.03 | 98.65 | 0.370 | 9.4 | 284 | 6010 |
CB25250 | 15.36 | 56.07 | 0.651 | 16.5 | 240 | 6010 |
CB19400 | 50.76 | 185.28 | 0.197 | 5.0 | 292 | 6010 |
CB19350 | 33.44 | 122.07 | 0.299 | 7.6 | 253 | 6010 |
CB19300 | 21.74 | 79.35 | 0.460 | 11.7 | 218 | 6010 |
CB19250 | 11.64 | 42.49 | 0.859 | 21.8 | 182 | 6010 |
CB19200 | 6.88 | 25.12 | 1.453 | 36.9 | 151 | 6010 |
CB15300 | 14.90 | 54.40 | 0.671 | 17.0 | 168 | 6010 |
CB15250 | 9.80 | 35.78 | 1.020 | 25.9 | 150 | 6010 |
CB15200 | 5.43 | 19.84 | 1.840 | 46.7 | 122 | 6010 |
CB10250 | 6.51 | 23.76 | 1.536 | 39.0 | 98 | 6010 |
CB10200 | 3.35 | 12.23 | *1.492 | 37.9 | 79 | 6010 |
CB10150 | 1.54 | 5.63 | **1.455 | 37.0 | 61 | 6010 |
CB10120 | 0.78 | 2.85 | **2.870 | 72.8 | 47 | 6010 |
* 5 lbs / 2.27 Kg weight used | ||||||
** 2.244 lbs / 1.019 Kg weight used |
Carbon Equivalent Charts
Click here for a Printable PDF of this RBS Batten Carbon Equivalent Chart
E-GLASS TO CARBON SUGGESTED/CLOSEST STIFFNESS EQUIVALENT | ||||||
---|---|---|---|---|---|---|
WEIGHT | E-GLASS | STIFFNESS | STIFFNESS | SUGGESTED CARBON EQUIVALENT |
WEIGHT | |
44 | E10090 | 0.8**** | n/a | n/a | n/a | |
48 | E10100 | 0.9**** | n/a | n/a | n/a | |
56 | E10120 | 1.2**** | n/a | n/a | n/a | |
67 | E10140 | 1.7*** | n/a | n/a | n/a | |
75 | E10160 | 2.3*** | n/a | n/a | n/a | |
85 | E10180 | 3.1** | = | 2.85** | CB10120 | 47 |
95 | E10200 | 4.3** | = | 5.63** | CB10150 | 61 |
110 | E10230 | 6.8** | = | 5.63** | CB10150 | 61 |
127 | E10265 | 9.7** | = | 12.23* | CB10200 | 79 |
146 | E10300 | 14.6** | = | 12.23* | CB10200 | 79 |
29 | E12050 | n/a | n/a | n/a | n/a | |
35 | E12060 | n/a | n/a | n/a | n/a | |
41 | E12070 | n/a | n/a | n/a | n/a | |
53 | E12090 | n/a | n/a | n/a | n/a | |
98 | E15140 | 2.1*** | n/a | n/a | n/a | |
117 | E15160 | 3.5** | = | 2.85** | CB10120 | 47 |
130 | E15180 | 4.8** | = | 5.63** | CB10150 | 61 |
148 | E15200 | 7.4* | = | 12.23* | CB10200 | 79 |
165 | E15230 | 9.7 | = | 12.23* | CB10200 | 79 |
192 | E15265 | 14.7 | = | 19.84 | CB15200 | 122 |
215 | E15300 | 21.1 | = | 19.84 | CB15200 | 122 |
148 | E19160 | 4.6** | n/a | n/a | n/a | |
167 | E19180 | 6* | n/a | n/a | n/a | |
185 | E19200 | 8.4* | = | 14.68* | CB15150 | 92 |
206 | E19230 | 11.4 | = | 19.84 | CB15200 | 122 |
239 | E19265 | 17.9 | = | 25.12 | CB19200 | 151 |
275 | E19300 | 26 | = | 25.12 | CB19200 | 151 |
320 | E19350 | 41.9 | = | 42.49 | CB19250 | 182 |
364 | E19400 | 60.3 | = | 79.35 | CB19300 | 218 |
323 | E25265 | 24.5 | = | 25.12 | CB19200 | 151 |
362 | E25300 | 34.1 | = | 42.49 | CB19250 | 182 |
424 | E25350 | 54.9 | = | 56.07 | CB25250 | 240 |
485 | E25400 | 79.4 | = | 98.65 | CB25300 | 284 |
592 | E25500 | 152.1 | = | 158.01 | CB25350 | 329 |
1048 | E38540 | 285.1 | = | 384.21 | CB38400 | 588 |
Batten material properties above are explained in terms of weight and stiffness.
-
For weight (or mass) we use grams. (One gram equals 0.0022 lb., 1000 g or 1 Kg = 2.205 lb.)
-
For stiffness we use two expressions; Spring Rate and EI-Beam Theory numbers.
“Spring Rate” numbers and “EI” numbers are values used to quantify this flexural rigidity or bending stiffness property of a batten due to the material properties combined with the geometry or shape and size of the batten.
SR = Bending stiffness (ratio weight over deflection) (lbs/inches)
E = E-modulus (N/m^2 = Pa)
I = Moment of inertia (m^4)
EI = Bending stiffness (product of E and I) (Nm^2) (or more commonly Nm^2)
EI-Beam Theory values were all measured and calculated using standard engineering calculations that give a bending stiffness value in Nm^2. The deflection (d) is measured at the center of the beam length, and is related as d = PL^3/48IE. We note that it is proportional to the load P, to the cube of the span L, and inversely proportional to the flexural rigidity IE. Solving for EI = PL^3/48d. For this calculation, any span and load can be used, making sure that the deflection doesn’t excessively sag the batten and change the measured length of the batten.
[button link=”mailto:info@rbsbattens.com?subject=Comments%20from%20the%20Deflection%20Chart” linking=”default” size=”medium” type=”wide” title=”Feel free to email us with any questions or discussions.”]Feel free to email us with any questions or discussions.[/button]Most of the deflections were measured using a 10 lb. weight for the deflection. Values preceded with a “*” were measured at the lower weights indicated, yielding higher accuracy.
PS>
Visco-elastic properties affecting dynamic batten response are not reflected by the E.I values, as they are more material property related (E-Glass, Carbon, Epoxy, interfacial adhesion, …)